Exercise 58

The function $f(x)=\sin (x+\sin 2 x), 0 \leq x \leq \pi$, arises in applications to frequency modulation (FM) synthesis.
(a) Use a graph of f produced by a calculator to make a rough sketch of the graph of f^{\prime}.
(b) Calculate $f^{\prime}(x)$ and use this expression, with a calculator, to graph f^{\prime}. Compare with your sketch in part (a).

Solution

Take a derivative of the given function.

$$
\begin{aligned}
f^{\prime}(x)=\frac{d f}{d x} & =\frac{d}{d x}[\sin (x+\sin 2 x)] \\
& =\cos (x+\sin 2 x) \cdot \frac{d}{d x}(x+\sin 2 x) \\
& =\cos (x+\sin 2 x) \cdot\left[1+(\cos 2 x) \cdot \frac{d}{d x}(2 x)\right] \\
& =\cos (x+\sin 2 x) \cdot[1+(\cos 2 x) \cdot(2)] \\
& =\cos (x+\sin 2 x)(1+2 \cos 2 x)
\end{aligned}
$$

The graph of $f^{\prime}(x)$ is negative wherever $f(x)$ is decreasing, and the graph of $f^{\prime}(x)$ is positive wherever $f(x)$ is increasing.

